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Spontaneous phase oscillation induced by inertia and time delay
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We consider a system of coupled oscillators with finite inertia and time-delayed interaction, and investigate
the interplay between inertia and delay both analytically and numerically. The phase velocity of the system is
examined; revealed in numerical simulations is the emergence of spontaneous phase oscillation without exter-
nal driving, which turns out to be in good agreement with analytical results derived in the strong-coupling
limit. Such self-oscillation is found to suppress synchronization, and its frequency is observed to decrease with
inertia and delay. We obtain the phase diagram, which displays oscillatory and stationary phases in the appro-
priate regions of the parameters.
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Systems of coupled nonlinear oscillators, serving as a proahereu represents the magnitude @btationa) inertia rela-
totype model for various oscillatory systems in nature, haveive to damping. The third term on the left-hand side denotes
been known to exhibit remarkable phenomena of collectivehe global coupling of strengti/N between oscillators, in-
synchronization, which have been observed in a variety otlicating that each oscillator interacts with others only after
physical, biological, and chemical systefi$. Among them, the retardation timer. The termw; on the right-hand side
there are systems where finite inertia and time delay are reenotes the intrinsic frequency of tht oscillator, and is
evant. For example, in a superconducting junction networkandomly distributed over the whole oscillators according to
[2], the capacitance plays the role of inertia while time delayg(w), which is assumed to be symmetric abeut0, and
naturally arises in some physical as well as biological syseoncave atw=0. In the absence of time delay and inertia
tems, where finite-time interval is actually required for the(r=u=0), Eq. (1) exactly reduces to the Kuramoto and
transmission of informatiof3]. This has motivated recent Nishikawa mode[7], for which analytical results are avail-
studies of the effects of finite inertia and of time delay onable. The system with either time delay or inertiat not
synchronization: In a system with inertia, suppression of synboth) also exhibits synchronization for the coupling strength
chronization and emergence of hysteresis has been observelong enough. The phases are stationary or monotonic in
[4], whereas a multitude of coherent states with differentime [4,5], indicating that the system either relaxes to the
synchronization frequencies, and suppression of the collegninimum-energy configuration or displays constant phase
tive frequency have been reported in systems with dgdy  velocity.

Note, however, that the effects of the two have been consid- Here, we investigate the dynamics of phases in the pres-
ered separately and independently of each other. The inteence of both inertia and delay, first by means of numerical
play between the two has not been explored in the mostimulations. For convenience, we take the Gaussian distribu-
general system with both inertia and time delay. For a singlgion with unit variance ¢?=1) for g(w) and choose the
oscillator with inertia, it is known that delayed restoring coupling strengthk =3, which is larger than the known criti-
force can destabilize a fixed point and produce oscillatiorcal valueg4,5]. We thus probe the interplay between inertia
[6]; this raises an interesting question as to how such osciland delay in the synchronized state. Equatibhhas been
latory behavior affects collective synchronization iset of  integrated with discrete time steps&tf=0.01. In computing
globally coupled oscillatorsvith inertia and delay. the order parameteN,=10° time steps have been used at

This paper investigates the interplay between inertia anéach run, with the data from the first X80° steps dis-
retarded interaction and their combined effects on synchrocarded. We have varied botst and N, to verify that the
nization. We consider a system of globally coupled oscilla-steady state has been attained and performed twenty inde-
tors, each possessing finite inertia and interacting with othergendent runs with different initial configurations, over which

via time-delayed interactions. To explore the interplay, weaverages have been taken. In this manner, we have computed
first examine the temporal behavior of the phase velocitythe power spectrum of the phase velocity

and obtain a nonvanishing ac component in the absence of
external periodic driving. Such spontaneous oscillation is 1N
found to suppress synchronization, and its frequency ob- E_E |17/,J.(f)|2, 2)
served to diminish with inertia and delay. Nji=1
We begin with the set of equations of motion governing

the dynamics ofN coupled oscillators, théth of which is  where ¢j(f)zf¢j(t)e2wiftdt is the Fourier component of

described by its phasg; (i=1,2,... N): the phase velocity at frequenéy
K N Figure 1 shows the obtained power spectrum in a system
B (1) + b (1) + — i) — b (t—1)]=w . (1 of N=100 oscillators, for coupling strength=3 and time
reiO)+ () N,—z‘l st~ ¢(t=nl=w, D) delay r=2 at various inertia valuesz=0.4, 0.6, and 0.8.
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FIG. 1. Power spectrum of the phase velogityarbitrary unitg

for coupling strengtrK =3, time delayr=2, and inertiau=04  ho stationary ondS) are exhibited in the plane dfu, 7) for K
(squares 0.6 (circles, and 0.8(triangles. Only the fundamental _ 3 Aisq displayed is the boundary separating the coexistence re-
pea.ks.are dlsp!ayed. Error bars ha}ve been estimated by the stand@ﬁgn (C). The data represented by open and solid squares have been
deviation and lines are merely guides to the eye. obtained from numerical simulations with five different configura-
tions; error bars have been estimated by the range of the obtained

FIG. 3. Phase boundaries between the oscillatory pf@sand

(We have considered the sidéup to 3200, and confirmed values.

the absence of appreciable finite-size effects Ner 100.

For small inertia £#=0.3), the power spectrum possesseshehavior of the order parameterEN*lmj exp@¢j)| with
only the zero-frequency component. Namely, the system dishe inertia. Figure @) shows the order parameter computed
plays stationary or monotonic behavior of the phase, similagia numerical simulations, as the inertia is varied between
to the one with delay only5]. When the inertia is raised (.1 and 1.2 with the increment @fu=0.01. We have first

beyond 0.3, on the other hand, several peaks develop at non-
zero fundamental and harmonic frequencies, and the oscilla-
tory phase emerges. As is increased further, those peaks
shift to the lower frequency sides, eventually disappearing
for u=1.0. We have examined such self-oscillatory behavior
for various values oK, 7, and u, and observed that the
oscillation frequencyf, decreases with both inertia and de-
lay, as shown in Fig. 2 for=1.8, 2.0, and 2.2.

The resulting phase boundaries in the plane(@f 7),
discriminating the oscillatory state and the stationary one, are
displayed in Fig. 3, where the coexistence of the two states is
also identified in the region between solid squares and open
ones. In the coexistence region, there exist a multitude of
solutions, giving stationary or oscillatory behavior depending
on the initial conditions. To explore this, we examine the
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FIG. 2. Oscillation frequency, for K=3 is shown to decrease
with inertia x at various amounts of delay:=1.8 (squarey 2.0
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FIG. 4. (a) Behavior of the order parameter with inertia fiér
(circles, and 2.2(triangles. The sizes of the error bars estimated by =3 and =2, obtained numericallyb) Comparison with the ana-
the standard deviation are about the same as those of the symbolgtical results(broken curve
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decreased the inertia from 1.2 to 0.1, which yields the steppling limit (K>K_.) has been taken. It is shown in E@®)
like structure consisting of the solid circles in Figa4  that the appearance of oscillatioA#£0) reducesA, sup-
Upon increasing the inertia from a given value, however, thepressing synchronization.

order parameter does not reverse the path along the solid We next consider the first harmonics in Ed), and obtain
circles; instead, it exhibits continuous dependence on the if9]
ertia, eventually following the open circles. In this manner a
multitude of solutions or “bands” have been found, as
shown in Fig. 4a). Note that there are two kinds in shape,

KA2(1—cosQ )= u?,

flat bands and bent ones. As the behavior of the phase veloc-
ity is examined, the system is stationary in the flat bands,

existing for small inertia £=0.3) and for large inertia
=1.1). In the bent bandffor 0.3=u=<0.9), on the other
hand, the system displays phase oscillations. Accordingly,
the range 0.&u=<1.1, where two kinds of bands coexist,

either the oscillatory phase or the stationary one is expecte
to appear depending on the initial conditions. This coexist-

ence range of inerti€for 7=2) is indeed consistent with Fig.
3.

1l

KA%sinQr=-Q, (7
which yields only the trivial solutiof) =0 in the absence of
either inertia or delay. It is thus concluded that tfseis-
tained spontaneous oscillation requires both inertia and de-
lay. Elimination ofA in Eg. (7) leads to the equation for the
%scillating frequency)

1t Or
LA

Q

®

To understand analytically these numerical results, W&o honzero solution(+0) of which may be searched in

first divide the population of the oscillators into two groups:

the synchronized grou(®) and the desynchronized oK),
and take the ansaig = ¢°+ w;t for D and
¢i=p+ Asin(Qt+ @) €)

for S[8]. In view of the symmetry of)(w), we consider the

dc componentbi0 to be constant. Results of numerical simu-
lations also manifest that near the phase boundary, the ag 21 _ ,2/k2

the ranger < 7<27. Equation(7), together with Eq(8),
givesA? in the form

1
2_ 20)2
A 2K,u,(1+’u 09). 9
Note in Eq.(6) thatA approaches unity as/K is reduced to

zero (@/K—0). In particular, Eq.(6) gives the range 0
, where the upper bound d@? determines

component is much smaller than the dc component, allowing,e 1,5yndary between stationary and oscillatory states. Ac-

the expansion in terms of the amplitudeUpon substituting
Eq. (3) into Eq.(1), we thus obtain for the oscillators 1) to
the order ofA?,

S Q7
0=5 2 sin(¢?—¢?)(1—Azsin27)— wQ?
J
© Or
—WE_ cos(¢>?—¢?)sin27 AsinOt+a)+|Q
J
(S
+NZ cog ¢ — ¢{)sinQ 7| Acog Ot +a), (4)
J

where the summations run ov8r Oscillators inD, the frac-
tion of which over the whole is negligibly small,

O(e~®M%27% " tym out not to contribute to the harmonics
in Q. A similar expansion foD leads to trivial equations.
The zeroth harmonics in E¢4) leads to

S ,
S st ¢%) = L1+ A SIR(QA2)]  (5)
J

or, in terms of the order parameter,

2

Azzl—%z[1+2Azsin2(QT/2)], ©6)

where ¢ is the variance of the distributiog(w) and the
thermodynamic limit N— o) together with the strong cou-

cordingly, on the boundary, Eq9) reads

2K o’
Q=\/—[1-—>5|—1, (10)

K

which in turn yields the boundary

2K 0_2 1 -1/2
2 7(1?)7}
0.2

X w—arctah\/ZK,u 1_F —-1]. (12

It can be observed that the oscillatory state appears only for
w=p=[2K(1—c?/K?)] L. The critical value u. de-
creases, allowing larger regions of the oscillatory state, as the
coupling strengttK is raised and as the variane€ is re-
duced. The order parametarobtained from Eq(7) for K
=3 and r=2 is plotted by the broken curve in Fig(k},
manifesting good agreement with the numerical result. The
tiny discrepancy oD (10 ?) between the two curves can be
attributed to the truncation of higher-order terms in E4).
Solving Eqg.(8) in the appropriate regime, we obtain the
oscillation frequency as a function of inertia and delay. Fig-
ure 5a) shows the behavior of the fundamental frequency
Q/27 on the plane of inertia and delay. For comparison, the
dependence on inertia for a given amount of defayl.8,
2.0, and 2.2 is shown in Fig.(B), together with the corre-
sponding numerical datgreviously plotted in Fig. 2 Note
the good agreement between the analytical results, obtained
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FIG. 5. Behavior of the fundamental frequenfy27 for K (b)
=3 (a) in the (u, 7 plane;(b) versusu for 7=1.8, 2.0, and 2.2,
obtained analytically. The data from numerical simulations, shown FIG. 6. Phase diagrarf®) in the three-dimensionaly, 7, K)
in Fig. 2, are also plotted for comparison. space;(b) in the (4, 7) plane for several values of the coupling

) ) . . strength, obtained analytically. The data from numerical simulations
from Eq. (8), and those from numerical simulations. It is ¢, K =3, shown in Fig. 3, are also plotted for comparison.

manifested that the oscillation frequency in general decreases
with the amount of delay and inertia. ) o

The phase diagram in the three-dimensional spadg.of In summary, we have studied the synchronization phe-
7, K) is displayed in Fig. @), where the boundary surface homena in a system of coupled oscillators, each possessing
separates the oscillatory state from the stationary one. Figuféhite inertia and interacting with others via time-delayed in-
6(b) exhibits the phase boundaries on the plane of inertia anteractions. The interplay between inertia and time delay has
delay for several values of the coupling strength. Also showrbeen investigated in the temporal behavior of the phase ve-
are the data obtained from numerical simulationsKet 3 locity, which reveals the emergence (slistainetl spontane-
(see Fig. 3, again demonstrating good agreement of the anaeus oscillation in the absence of external periodic driving.
lytical results based on E@L1) with the simulation results. It We have also obtained the phase diagram, which displays
is further observed that the region of the oscillatory statepscillatory and stationary states in the appropriate regions of
grows with the coupling strength. Note, however, that thethe three-dimensional space consisting of the inertia, delay,
analytical approach, focusing on the existence of a nonzerand coupling strength.
solution for (), is not able to discern the coexistence of os-
cillatory and stationary phases from the oscillatory phase. We acknowledge the hospitality from the Korea Institute
Thus, the numerical data represented by solid squares in Fifpr Advanced Study, where part of this work was performed,
3 have no counterpart in the analytical results shown irand partial support from the Korea Research Foundation
Fig. 6. through Grant No. 2000-015-DP0138.
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