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Spontaneous phase oscillation induced by inertia and time delay
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We consider a system of coupled oscillators with finite inertia and time-delayed interaction, and investigate
the interplay between inertia and delay both analytically and numerically. The phase velocity of the system is
examined; revealed in numerical simulations is the emergence of spontaneous phase oscillation without exter-
nal driving, which turns out to be in good agreement with analytical results derived in the strong-coupling
limit. Such self-oscillation is found to suppress synchronization, and its frequency is observed to decrease with
inertia and delay. We obtain the phase diagram, which displays oscillatory and stationary phases in the appro-
priate regions of the parameters.
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Systems of coupled nonlinear oscillators, serving as a p
totype model for various oscillatory systems in nature, ha
been known to exhibit remarkable phenomena of collec
synchronization, which have been observed in a variety
physical, biological, and chemical systems@1#. Among them,
there are systems where finite inertia and time delay are
evant. For example, in a superconducting junction netw
@2#, the capacitance plays the role of inertia while time de
naturally arises in some physical as well as biological s
tems, where finite-time interval is actually required for t
transmission of information@3#. This has motivated recen
studies of the effects of finite inertia and of time delay
synchronization: In a system with inertia, suppression of s
chronization and emergence of hysteresis has been obse
@4#, whereas a multitude of coherent states with differ
synchronization frequencies, and suppression of the co
tive frequency have been reported in systems with delay@5#.
Note, however, that the effects of the two have been con
ered separately and independently of each other. The in
play between the two has not been explored in the m
general system with both inertia and time delay. For a sin
oscillator with inertia, it is known that delayed restorin
force can destabilize a fixed point and produce oscillat
@6#; this raises an interesting question as to how such os
latory behavior affects collective synchronization in aset of
globally coupled oscillatorswith inertia and delay.

This paper investigates the interplay between inertia
retarded interaction and their combined effects on synch
nization. We consider a system of globally coupled osci
tors, each possessing finite inertia and interacting with oth
via time-delayed interactions. To explore the interplay,
first examine the temporal behavior of the phase veloc
and obtain a nonvanishing ac component in the absenc
external periodic driving. Such spontaneous oscillation
found to suppress synchronization, and its frequency
served to diminish with inertia and delay.

We begin with the set of equations of motion governi
the dynamics ofN coupled oscillators, thei th of which is
described by its phasef i ~i 51,2, . . . ,N!:

mf̈ i~ t !1ḟ i~ t !1
K

N (
j 51

N

sin@f i~ t !2f j~ t2t!#5v i , ~1!
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wherem represents the magnitude of~rotational! inertia rela-
tive to damping. The third term on the left-hand side deno
the global coupling of strengthK/N between oscillators, in-
dicating that each oscillator interacts with others only af
the retardation timet. The termv i on the right-hand side
denotes the intrinsic frequency of thei th oscillator, and is
randomly distributed over the whole oscillators according
g(v), which is assumed to be symmetric aboutv50, and
concave atv50. In the absence of time delay and inert
(t5m50), Eq. ~1! exactly reduces to the Kuramoto an
Nishikawa model@7#, for which analytical results are avail
able. The system with either time delay or inertia~but not
both! also exhibits synchronization for the coupling streng
strong enough. The phases are stationary or monotoni
time @4,5#, indicating that the system either relaxes to t
minimum-energy configuration or displays constant ph
velocity.

Here, we investigate the dynamics of phases in the p
ence of both inertia and delay, first by means of numeri
simulations. For convenience, we take the Gaussian distr
tion with unit variance (s251) for g(v) and choose the
coupling strengthK53, which is larger than the known criti
cal values@4,5#. We thus probe the interplay between iner
and delay in the synchronized state. Equation~1! has been
integrated with discrete time steps ofdt50.01. In computing
the order parameter,Nt5106 time steps have been used
each run, with the data from the first 9.63105 steps dis-
carded. We have varied bothdt and Nt to verify that the
steady state has been attained and performed twenty i
pendent runs with different initial configurations, over whic
averages have been taken. In this manner, we have comp
the power spectrum of the phase velocity

S[
1

N (
j 51

N

uc j~ f !u2, ~2!

where c j ( f )[*ḟ j (t)e
2p i f tdt is the Fourier component o

the phase velocity at frequencyf.
Figure 1 shows the obtained power spectrum in a sys

of N5100 oscillators, for coupling strengthK53 and time
delay t52 at various inertia values,m50.4, 0.6, and 0.8.
©2002 The American Physical Society08-1
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~We have considered the sizeN up to 3200, and confirmed
the absence of appreciable finite-size effects forN*100!.
For small inertia (m&0.3), the power spectrum possess
only the zero-frequency component. Namely, the system
plays stationary or monotonic behavior of the phase, sim
to the one with delay only@5#. When the inertia is raised
beyond 0.3, on the other hand, several peaks develop at
zero fundamental and harmonic frequencies, and the osc
tory phase emerges. Asm is increased further, those pea
shift to the lower frequency sides, eventually disappear
for m*1.0. We have examined such self-oscillatory behav
for various values ofK, t, and m, and observed that th
oscillation frequencyf 0 decreases with both inertia and d
lay, as shown in Fig. 2 fort51.8, 2.0, and 2.2.

The resulting phase boundaries in the plane of~m, t!,
discriminating the oscillatory state and the stationary one,
displayed in Fig. 3, where the coexistence of the two state
also identified in the region between solid squares and o
ones. In the coexistence region, there exist a multitude
solutions, giving stationary or oscillatory behavior depend
on the initial conditions. To explore this, we examine t

FIG. 1. Power spectrum of the phase velocity~in arbitrary units!
for coupling strengthK53, time delayt52, and inertiam50.4
~squares!, 0.6 ~circles!, and 0.8~triangles!. Only the fundamental
peaks are displayed. Error bars have been estimated by the sta
deviation and lines are merely guides to the eye.

FIG. 2. Oscillation frequencyf 0 for K53 is shown to decreas
with inertia m at various amounts of delay:t51.8 ~squares!, 2.0
~circles!, and 2.2~triangles!. The sizes of the error bars estimated
the standard deviation are about the same as those of the sym
02620
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behavior of the order parameterD[N21u( j exp(ifj)u with
the inertia. Figure 4~a! shows the order parameter comput
via numerical simulations, as the inertia is varied betwe
0.1 and 1.2 with the increment ofdm50.01. We have first

ard

ols.

FIG. 3. Phase boundaries between the oscillatory phase~O! and
the stationary one~S! are exhibited in the plane of~m, t! for K
53. Also displayed is the boundary separating the coexistence
gion ~C!. The data represented by open and solid squares have
obtained from numerical simulations with five different configur
tions; error bars have been estimated by the range of the obta
values.

FIG. 4. ~a! Behavior of the order parameter with inertia forK
53 andt52, obtained numerically.~b! Comparison with the ana
lytical results~broken curve!.
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decreased the inertia from 1.2 to 0.1, which yields the st
like structure consisting of the solid circles in Fig. 4~a!.
Upon increasing the inertia from a given value, however,
order parameter does not reverse the path along the
circles; instead, it exhibits continuous dependence on the
ertia, eventually following the open circles. In this manne
multitude of solutions or ‘‘bands’’ have been found,
shown in Fig. 4~a!. Note that there are two kinds in shap
flat bands and bent ones. As the behavior of the phase ve
ity is examined, the system is stationary in the flat ban
existing for small inertia (m&0.3) and for large inertia (m
*1.1). In the bent bands~for 0.3&m&0.9!, on the other
hand, the system displays phase oscillations. Accordingly
the range 0.9&m&1.1, where two kinds of bands coexis
either the oscillatory phase or the stationary one is expe
to appear depending on the initial conditions. This coex
ence range of inertia~for t52! is indeed consistent with Fig
3.

To understand analytically these numerical results,
first divide the population of the oscillators into two group
the synchronized group~S! and the desynchronized one~D!,
and take the ansatzf i5f i

01v i t for D and

f i5f i
01A sin~Vt1a! ~3!

for S @8#. In view of the symmetry ofg(v), we consider the
dc componentf i

0 to be constant. Results of numerical sim
lations also manifest that near the phase boundary, th
component is much smaller than the dc component, allow
the expansion in terms of the amplitudeA. Upon substituting
Eq. ~3! into Eq.~1!, we thus obtain for the oscillators inS, to
the order ofA2,

v i5
K

N (
j

~S!

sin~f i
02f j

0!S 12A2 sin2
Vt

2 D2FmV2

2
2K

N (
j

~S!

cos~f i
02f j

0!sin2
Vt

2 GA sin~Vt1a!1FV

1
K

N (
j

~S!

cos~f i
02f j

0!sinVtGA cos~Vt1a!, ~4!

where the summations run overS. Oscillators inD, the frac-
tion of which over the whole is negligibly smal
O(e2(KD)2/2s2

), turn out not to contribute to the harmonic
in V. A similar expansion forD leads to trivial equations.

The zeroth harmonics in Eq.~4! leads to

1

N (
j

~S!

sin~f i
02f j

0!5
v i

K
@11A2 sin2~Vt/2!# ~5!

or, in terms of the order parameter,

D2512
s2

K2 @112A2 sin2~Vt/2!#, ~6!

where s2 is the variance of the distributiong(v) and the
thermodynamic limit (N→`) together with the strong cou
02620
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pling limit (K@Kc) has been taken. It is shown in Eq.~6!
that the appearance of oscillation (AÞ0) reducesD, sup-
pressing synchronization.

We next consider the first harmonics in Eq.~4!, and obtain
@9#

KD2~12cosVt!5mV2,

KD2 sinVt52V, ~7!

which yields only the trivial solutionV50 in the absence o
either inertia or delay. It is thus concluded that the~sus-
tained! spontaneous oscillation requires both inertia and
lay. Elimination ofD in Eq. ~7! leads to the equation for th
oscillating frequencyV

V52
1

m
tan

Vt

2
, ~8!

the nonzero solution (VÞ0) of which may be searched i
the rangep,Vt,2p. Equation~7!, together with Eq.~8!,
givesD2 in the form

D25
1

2Km
~11m2V2!. ~9!

Note in Eq.~6! thatD approaches unity ass/K is reduced to
zero (s/K→0). In particular, Eq.~6! gives the range 0
<D2<12s2/K2, where the upper bound ofD2 determines
the boundary between stationary and oscillatory states.
cordingly, on the boundary, Eq.~9! reads

V5A2K

m S 12
s2

K2D21, ~10!

which in turn yields the boundary

t52F2K

m S 12
s2

K2D2
1

m2G21/2

3Fp2arctanA2KmS 12
s2

K2D21G . ~11!

It can be observed that the oscillatory state appears only
m>mc[@2K(12s2/K2)#21. The critical value mc de-
creases, allowing larger regions of the oscillatory state, as
coupling strengthK is raised and as the variances2 is re-
duced. The order parameterD obtained from Eq.~7! for K
53 and t52 is plotted by the broken curve in Fig. 4~b!,
manifesting good agreement with the numerical result. T
tiny discrepancy ofO(1022) between the two curves can b
attributed to the truncation of higher-order terms in Eq.~4!.

Solving Eq.~8! in the appropriate regime, we obtain th
oscillation frequency as a function of inertia and delay. F
ure 5~a! shows the behavior of the fundamental frequen
V/2p on the plane of inertia and delay. For comparison,
dependence on inertia for a given amount of delayt51.8,
2.0, and 2.2 is shown in Fig. 5~b!, together with the corre-
sponding numerical data~previously plotted in Fig. 2!. Note
the good agreement between the analytical results, obta
8-3
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from Eq. ~8!, and those from numerical simulations. It
manifested that the oscillation frequency in general decre
with the amount of delay and inertia.

The phase diagram in the three-dimensional space of~m,
t, K! is displayed in Fig. 6~a!, where the boundary surfac
separates the oscillatory state from the stationary one. Fi
6~b! exhibits the phase boundaries on the plane of inertia
delay for several values of the coupling strength. Also sho
are the data obtained from numerical simulations forK53
~see Fig. 3!, again demonstrating good agreement of the a
lytical results based on Eq.~11! with the simulation results. It
is further observed that the region of the oscillatory st
grows with the coupling strength. Note, however, that
analytical approach, focusing on the existence of a nonz
solution forV, is not able to discern the coexistence of o
cillatory and stationary phases from the oscillatory pha
Thus, the numerical data represented by solid squares in
3 have no counterpart in the analytical results shown
Fig. 6.

FIG. 5. Behavior of the fundamental frequencyV/2p for K
53 ~a! in the ~m, t! plane;~b! versusm for t51.8, 2.0, and 2.2,
obtained analytically. The data from numerical simulations, sho
in Fig. 2, are also plotted for comparison.
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In summary, we have studied the synchronization p
nomena in a system of coupled oscillators, each posses
finite inertia and interacting with others via time-delayed
teractions. The interplay between inertia and time delay
been investigated in the temporal behavior of the phase
locity, which reveals the emergence of~sustained! spontane-
ous oscillation in the absence of external periodic drivin
We have also obtained the phase diagram, which disp
oscillatory and stationary states in the appropriate region
the three-dimensional space consisting of the inertia, de
and coupling strength.

We acknowledge the hospitality from the Korea Institu
for Advanced Study, where part of this work was performe
and partial support from the Korea Research Founda
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n FIG. 6. Phase diagram~a! in the three-dimensional (m, t, K)
space;~b! in the ~m, t! plane for several values of the couplin
strength, obtained analytically. The data from numerical simulati
for K53, shown in Fig. 3, are also plotted for comparison.
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